IMPORTANT: This syllabus form should be submitted to OAA (gsbs_academic_affairs@uth.tmc.edu) a week before the start of each semester.

NOTE to STUDENTS: If you need any accommodations related to attending/enrolling in this course, please contact one of the Graduate School's 504 Coordinators, Cheryl Spitzenberger or Natalie Sirisaengtaksin. We ask that you notify GSBS in advance (preferably at least 3 days before the start of the semester) so we can make appropriate arrangements.

Term and Year: Fall 2024

Course Number and Course Title:

GS14 1214: Molecular and Cellular Neuroscience

Credit Hours: 4

Meeting Location: UT- McGovern Medical School

Building/Room#: MSB B.620

WebEx/Zoom Link: N/A

Program Required Course: Yes

Approval Code: **No**

Audit Permitted: Yes

Classes Begin: August 28, 2024

Classes End: December 6, 2024

Final Exam Week: **December 9-13, 2024**

Class Meeting Schedule

Day	Time
M/W/F	9 am – 10:20am

Course Director

Name and Degree: Ruth Heidelberger, MD, PhD

Title: Professor

Department: Neurobiology and Anatomy

Institution: UTH

Email Address: Ruth.Heidelberger@uth.tmc.edu

Contact Number: 713-500-5624

Course Co-Director/s: (if any)

Name and Degree: Michael Beierlein, PhD

Title: Associate Professor

Department: Neurobiology and Anatomy

Institution: UTH

Email Address: michael.beierlein@uth.tmc.edu

Contact Number: 713-500-5619

Instructor/s

1. Name and Degree: Shin Nagayama, PhD

Institution: UTHH-MMS

Email Address: Shin.Nagayama@uth.tmc.edu

2. Name and Degree: Harel Shouval, PhD

Institution: UTHH-MMS

Email Address: Harel.Shouval@uth.tmc.edu

3. Name and Degree: Andrea Stavoe, PhD

Institution: UTHh-MMS

Email Address: <u>Andrea.K.Stavoe@uth.tmc.edu</u>

4. Name and Degree: Neal Waxham, PhD

Institution: UTHH-MMS

Email Address: M.N.Waxham@uth.tmc.edu

5. Name and Degree Keran Ma, PhD

Institution: UTHH-MMS

Email Address. Keran.Ma@uth.tmc.edu

6. Name and Degree: Kristin Eckel-Mahan, PhD

Institution: UTHH-MMS

Email Address: Kristin.I.Mahan@uth.tmc.edu

7. Name and Degree: **Ruth Heidelberger, MD, PhD**Institution: UTHH-MMS

Email Address: Ruth.Heidelberger@uth.tmc.edu

8. Name and Degree: **Michael Beierlein, PhD** Institution: UTHH-MMS

Email Address: Michael.Beierlein@uth.tmc.edu

Course Description: This course is a graduate level treatment of molecular and cellular neuroscience. It will introduce basic concepts of molecular, electrical and chemical signaling in individual neurons, synapses, and local neuronal circuits. Topics covered include the functional properties of membranes, receptors, and channels, intracellular signaling cascades, synaptic transmission, short- and long-term forms of synaptic plasticity, and information processing in neuronal dendrites and local circuits.

Textbook/Supplemental Reading Materials (if any)

(Textbook copies can be signed out from Amanda Williamson, MSB 7.262): electronic versions may be available through the TMC Library)

- Molecular Cell Biology, Lodish et al., eds. 7th edition
- From Molecules to Networks, Byrne et al., eds. 3rd edition (FMN)
- Cellular and Molecular Neurophysiology, 3rd, Constance Hammond (Academic Press/Elsevier)
- Neuroscience Online: An Electronic Textbook for the Neurosciences, http://nba.uth.tmc.edu/neuroscience/
- Neuron simulation program: MetaNeuron, download at http://www.metaneuron.org/

Course Objective/s:

Upon successful completion of this course, students will learn basic concepts of molecular, electrical, and chemical signaling in individual neurons, synapses, and local neuronal circuits.

Specific Learning Objectives:

- 1. Understand the composition and electrical characteristics of biomembranes, including their passive and active properties.
- 2. Understand the structure and function of voltage- and ligand gated ion channels and G-protein coupled Receptors.
- 3. Understand the mechanisms underlying intracellular signaling pathways in neurons.
- 4. Understand the molecular and cellular properties underlying synaptic transmission and synaptic plasticity.
- 5. Understand the integration of signals in neuronal dendrites and circuits.

Student Responsibilities and Expectations:

Students enrolled in this course will be expected to perform the following activities each week.

- 1. Read assigned readings for each lecture prior to that lecture.
- 2. Attend class and be prepared to discuss possible solutions to questions posed by the lecturer
- 3. Attend and contribute to one of the lab sessions
- 4. Attend and be prepared to participate in the scheduled review sessions.
- 5. Participate in and contribute to course discussions during lectures and review sessions
- 6. Prepare for and take each of the three, non-cumulative take-home examinations

Students are expected to peruse all assigned reading material (textbook sections and research literature) prior to class. Take-home examinations must be individually completed by each student without the assistance of another human being, but course notes and reading materials may be utilized. Engaging in unethical behavior will be grounds for dismissal from the course without credit and further GSBS disciplinary action.

Grading System: Letter Grade (A-F)

Student Assessment and Grading Criteria: (May include the following:)

Percentage	Description
Take-home exams (100 %)	3 take-home exams of equal weight.

CLASS SCHEDULE - Fall 2024

Date	Duration (Hour(s) taught by lecturer)	Lecture Topic	Lecturer/s
8-26	1 hour and 20 minutes	Introduction to neuronal cell biology	Stavoe
8-28	u	Mechanisms of neuronal homeostasis	Stavoe
8-30	и	Membrane composition I – structural/functional roles of lipids –rafts	Waxham
9-4	u	Membrane composition II – Protein-lipid interactions	Waxham
9-6	u	Voltage-gated K+-channels	Waxham
9-9	и	Voltage-gated Na+-channels	Waxham
9-11	и	ntroduction to neurons, synapses and neuronal networks	Beierlein
9-13	и	Ionic basis of resting membrane potential	Beierlein

9-16	и	Mechanisms of action potentials	Beierlein
9-18	и	Microscopic and macroscopic Na and K currents	Beierlein
9-20	и	Propagation of action potentials, space and time constant	Beierlein
9-23	?	Electrophysiological recording techniques	Beierlein
9-25	u	Neurophysiology lab, MSE R419, Time TBD.	Beierlein
9-30	u	Review session 1	Stavoe, Waxham, Beierlein
10-2	u	Intracellular signaling I – GPCR structure/signaling at the membrane	Eckel-Mahan
10-4	u	Intracellular signaling II – Diffusion, Ca2+ domains, intracellular stores	Eckel-Mahan
10-7	u	Intracellular signaling III – forward/backward signaling – phosphor	Eckel-Mahan
10-9	u	Voltage-gated Ca2+-channels	Heidelberger
10-11	u	Neurotransmitter release, Part I: "In the beginning"	Heidelberger
10-14	u	Neurotransmitter release, Part II: "Calcium and timing"	Heidelberger
10-16	u	Neurotransmitter release, Part III: "Synaptic design"	Heidelberger
10-18	u	Ionotropic synaptic signaling	Heidelberger
10-21	u	Metabotropic synaptic signaling	Heidelberger
10-23	u	Ligand-gated channels - nAChR and GABA	Waxham
10-25	u	Ligand-gated channels – Glycine/Glutamate	Waxham
10-28	u	Optical Approaches in Neurophysiology	Heidelberger
10-30	и	Review Session 2	Heidelberger, Waxham, Eckel- Mahan
11-1	и	Axons and dendrites	Stavoe
11-4	и	Neuronal Polarity	Stavoe
11-6	и	Synaptic integration in dendrites	Beierlein
11-8	и	Information processing in active dendrites	Beierlein
11-11	u	Electrical synaptic transmission	Beierlein
11-13	u	Control of synaptic signaling by astrocytes	Beierlein
11-15	u	Sensory Transduction 1	Heidelberger
11-18	u	Sensory Circuits 1	Heidelberger
11-20	и	Long-term synaptic Plasticity–Induction	Shouval
11-22	u	Long-term synaptic Plasticity–Expression	Shouval
11-25	u	Sensory Transduction 2	Nagayama
12-2	и	Sensory circuits 2	Nagayama
12-4	и	Advances in in vivo neurophysiological approaches	Ma
12-6	и	Review session 3	Ma, Nagayama, Shouval, Beierlein, Heidelberger, Stavoe